• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hao, Yansong (Hao, Yansong.) | Song, Liuyang (Song, Liuyang.) | Wang, Mengyang (Wang, Mengyang.) | Cui, Lingli (Cui, Lingli.) (学者:崔玲丽) | Wang, Huaqing (Wang, Huaqing.)

收录:

EI Scopus SCIE

摘要:

Since roller bearing is one of the most vulnerable components, bearing faults usually occur in an unprepared situation with multiple faults, and the quantity of sensors is limited in the real-time working environment, resulting in an underdetermined blind source separation (UBSS) problem to extract the fault features. Because the collected signals are usually not independent and not sparse enough, traditional methods of separating signals cannot perform well. In this paper, an optimized intrinsic characteristic-scale decomposition (OICD) method is proposed to solve the underdetermined problem. Meanwhile, the constraint error factor is introduced to overcome the drawback that the ideal ending condition of ICD is not proper for the vibration signal of bearing. In addition, given that non-negative matrix factorization (NMF) is not limited by the source signal independence and sparsity, an improved UBSS model is constructed, and the PCs are used as the input matrix of local NMF to obtain the separation signal. Ultimately, envelope analysis is utilized to detect the source signal feature. Both simulated and experimental vibration signals are used to verify the effectiveness of the proposed approach. Besides, the traditional method is juxtaposed with the suggested method. The results indicate that the proposed method is effective in dealing with the compound faults separation of the rotating machinery.

关键词:

optimized intrinsic characteristic-scale decomposition. Local non-negative matrix factorization underdetermined blind source separation

作者机构:

  • [ 1 ] [Hao, Yansong]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 2 ] [Song, Liuyang]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 3 ] [Wang, Mengyang]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 4 ] [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
  • [ 5 ] [Cui, Lingli]Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China

通讯作者信息:

  • 崔玲丽

    [Wang, Huaqing]Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China;;[Cui, Lingli]Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 11427-11435

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 43

ESI高被引论文在榜: 4 展开所有

  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-9

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:400/4288674
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司