• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Lina (Jia, Lina.) | Zhang, Quan (Zhang, Quan.) | Liu, Yi (Liu, Yi.) | Chen, Wenbin (Chen, Wenbin.) | Wang, Na (Wang, Na.) | Gui, Zhiguo (Gui, Zhiguo.) | Yang, Guanru (Yang, Guanru.)

收录:

SCIE

摘要:

Low dose computed tomography (LDCT) can reduce the radiation hazard to patients effectively. However, mottle noise and streak artifacts often lower and degenerate the quality of the LDCT image in the process of reconstruction. This article presents a two-step denoising method, which exploits the morphological component analysis (MCA) and non-local means (NLM), for removing the noise and artifacts in LDCT image. In the first step, the MCA-based image separation is performed with the proposed dictionary. The dictionary is firstly established from the learning procedure from the preprocessed images, and then modified by using gradient activity measure. Consequently, the streak artifacts are removed from LDCT image. In the second step, the NLM method is adopted to further remove the mottle noise in the residual image. Experimental results from both simulated phantom and real clinical data demonstrate that compared with several related methods, the proposed method shows superior performance in both noise/artifacts removal and structure preservation.

关键词:

Low Dose Computed Tomography (LDCT) Image Denoising Morphological Component Analysis (MCA) Non-Local Means (NLM)

作者机构:

  • [ 1 ] [Jia, Lina]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 2 ] [Zhang, Quan]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 3 ] [Liu, Yi]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 4 ] [Chen, Wenbin]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 5 ] [Wang, Na]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 6 ] [Gui, Zhiguo]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China
  • [ 7 ] [Jia, Lina]Shanxi Univ, Dept Elect Informat Engn, Taiyuan 030013, Shanxi, Peoples R China
  • [ 8 ] [Yang, Guanru]Beijing Univ Technol, Sch Informat & Commun Engn, Beijing 100000, Peoples R China

通讯作者信息:

  • [Gui, Zhiguo]North Univ China, Shanxi Prov Key Lab Biomed Imaging & Big Data, Taiyuan 030051, Shanxi, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS

ISSN: 2156-7018

年份: 2019

期: 1

卷: 9

页码: 140-147

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:137

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:342/4957249
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司