• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Lishan (Liu, Lishan.) | Jia, Ning (Jia, Ning.) | Lin, Lei (Lin, Lei.) | He, Zhengbing (He, Zhengbing.)

收录:

EI Scopus SCIE

摘要:

An input vector composed of various features plays an important role in short-term traffic forecasting. However, there is limited research on the optimal feature selection of an input vector for a certain forecasting task. To fill the gap, this paper proposes a cohesion-based heuristic feature selection method by analyzing the nature of the forecasting methods. This method is able to determine which features should be contained in an input vector to make a forecasting algorithm perform better. The proposed method is demonstrated in two experiments based on the empirical traffic flow data. The results show that the method is able to improve the performances of the short-term traffic forecasting algorithms. It is then suggested to consider the proposed method as a preprocessing procedure in practical forecasting applications.

关键词:

input vector optimal feature selection short-term forecasting Traffic flow

作者机构:

  • [ 1 ] [Liu, Lishan]Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China
  • [ 2 ] [Jia, Ning]Tianjin Univ, Coll Management & Econ, Tianjin 300072, Peoples R China
  • [ 3 ] [Lin, Lei]Univ Rochester, Goergen Inst Data Sci, Rochester, NY 14620 USA
  • [ 4 ] [He, Zhengbing]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100024, Peoples R China

通讯作者信息:

  • [He, Zhengbing]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100024, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 3383-3389

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:237/4611775
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司