• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, J. (Ji, J..) | Pang, H. (Pang, H..) | Yang, C. (Yang, C..) | Liu, J. (Liu, J..)

收录:

Scopus PKU CSCD

摘要:

When the dimension of text data is high, the regularized extreme learning machine (ELM) of single hidden layer structure has not enough ability to express feature in the text classification. To solve the problem, this paper presented a text classification method based on multi-layer extreme learning machine (ML-ELM). First, the method used the compressed representation of extreme learning machine-based auto-encoder (ELM-AE) to reduce the dimension of the text data. Then, the structure of the multi-hidden was used to represent high-level features in the text data, and the method of least squares was used to classify the text data. The experimental results on Reuters, 20newsgroup and Fudan University Chinese Corpus datasets show that this algorithm has a good classification performance compared with other algorithms. © 2019, Editorial Department of Journal of Beijing University of Technology. All right reserved.

关键词:

Extreme learning machine-based auto-encoder (ELM-AE); Feature mapping; High dimensional text; Multi-layer extreme learning machine (ML-ELM); Neural network; Text classification

作者机构:

  • [ 1 ] [Ji, J.]Multimedia and Intelligent Software Technology Beijing Key Laboratory, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Pang, H.]Multimedia and Intelligent Software Technology Beijing Key Laboratory, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Yang, C.]Multimedia and Intelligent Software Technology Beijing Key Laboratory, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Liu, J.]Multimedia and Intelligent Software Technology Beijing Key Laboratory, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Ji, J.]Multimedia and Intelligent Software Technology Beijing Key Laboratory, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2019

期: 6

卷: 45

页码: 534-545

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:725/3889351
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司