• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Zhang, Pei (Zhang, Pei.) | Jin, Liu (Jin, Liu.) (学者:金浏) | Lu, Dechun (Lu, Dechun.) (学者:路德春)

收录:

EI Scopus SCIE

摘要:

Sandy cobble stratum is a kind of heterogeneous geological body. A further study on the safety of wall rocks and underground structure demands developing suitable analysis method to simulate tunnel excavation in such a formation. Macro-scale simulations assume the sandy cobble soil to be homogeneous in numerical models. They get more efficient computing, but have difficulties in capturing enough information about the meso-scopic fields needed. Meso-scale simulations explicitly represent the individual components of the heterogeneous internal material structure in numerical models, e.g. the shape and the spatial distribution of rocks. They achieve high accuracy, but large computational cost would be needed. To reduce the numerical effort with the precision guaranteed, a multi-scale analysis method for simulating tunnel excavation in sandy cobble strata is proposed. In this method, the numerical model is divided into two regions, involving the meso-scale region and macro-scale region. The meso-scale region is a critical sub-domain disturbed by tunnel excavation, in it, the rocks and soil are considered as separate constituents. In the macro domain, the sand gravel soil was regarded as homogeneous materials whose effective material parameters were determined using an equivalent homogenization method. Three critical issues in the multi-scale method are explored, including: (i) the determination of meso domain and macro domain, (ii) the determination of rock maximum size that can be homogenized in the meso domain and iii) the determination of effective material parameters of soil-rock mixture during the equivalent process. By comparing with simulation results predicted by macro-scale and meso-scale simulation methods, the validation of the proposed multi-scale simulation method was carried out. The result indicates that the proposed multi-scale analysis method has a high efficiency without loosening accuracy on the simulation of tunnel excavation in sandy cobble stratum.

关键词:

Heterogeneity Multi-scale numerical method Sandy cobble stratum Tunnel excavation High-efficiency

作者机构:

  • [ 1 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Pei]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Lu, Dechun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 金浏

    [Zhang, Pei]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China;;[Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY

ISSN: 0886-7798

年份: 2019

卷: 83

页码: 220-230

6 . 9 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 33

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:525/3903195
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司