收录:
摘要:
A spectral approach was presented in the computation of dispersion curves for the general anisotropic hollow cylinders. The derivation is based on the hybrid method of the state-vector formalism and Legendre polynomials expansion, which was previously adopted for the anisotropic plates. This method will lead to an eigenvalue/eigenvector problem for the calculation of wavenumbers and displacement profiles. This hybrid method avoids solving the transcendental dispersion equation. A closed-form solution for the hollow cylinder, involving multiple integral expressions, is demonstrated. A stable scheme for the integration expansion was established by re-expanding the expansion operators from the first round Legendre polynomial expansion versus the displacements. Usually, the traditional matrix methods are based on root-finding algorithms, which is difficult to implement in anisotropic tubes. In this research, the hybrid approach we proposed provides a reliable mathematical solution of wave propagations in an anisotropic hollow cylinder. Applications will be illustrated using isotropic and orthotropic hollow cylinders, in which the isotropic case agrees well with the results by global matrix method. The dispersion curves of orthotropic hollow cylinders, when the out radius set to approximate infinity, are compared to its corresponding anisotropic plate, which is obtained from our previous work. Furthermore, the displacement and stress profiles will be given and analyzed for an orthotropic tube, which has 10 mm thickness with an out radius of 50 mm.
关键词:
通讯作者信息:
来源 :
COMPOSITE STRUCTURES
ISSN: 0263-8223
年份: 2019
卷: 207
页码: 645-657
6 . 3 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:211
JCR分区:1