• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wen (Zhang, Wen.) (学者:张文) | Du, Yuhang (Du, Yuhang.) | Yoshida, Taketoshi (Yoshida, Taketoshi.) | Yang, Ye (Yang, Ye.)

收录:

EI Scopus SCIE

摘要:

Traditional collaborative filtering techniques suffer from the data sparsity problem in practice. That is, only a small proportion of all items in the recommender system occur in a user's rated item list. However, in order to retrieve items meeting a user's interest, all possible candidate items should be investigated. To address this problem, this paper proposes a recommendation approach called DeepRec, based on feedforward deep neural network learning with item embedding and weighted loss function. Specifically, item embedding learns numerical vectors for item representation, and weighted loss function balances popularity and novelty of recommended items. Moreover, it introduces two strategies, i.e. sampling by random (Ran-Strategy) and sampling by distribution (Pro-Strategy), to leave one item as output and the remaining as input from each user's historically rated item list. Max-pooling and average-pooling are employed to combine individual item vectors to derive users' input vectors for feedforward deep neural network learning. Experiments on the App dataset and the Last.fm dataset demonstrate that the proposed DeepRec approach is superior to state-of-the-art techniques in recommending Apps and songs in terms of accuracy and diversity as well as complexity. (C) 2018 Elsevier Inc. All rights reserved.

关键词:

Weighted loss function Deep neural network Item embedding DeepRec Recommender system

作者机构:

  • [ 1 ] [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 3 ] [Du, Yuhang]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 4 ] [Yoshida, Taketoshi]Japan Adv Inst Sci & Technol, Sch Knowledge Sci, 1-1 Ashahidai, Nomi, Ishikawa 9231292, Japan
  • [ 5 ] [Yang, Ye]Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA

通讯作者信息:

  • 张文

    [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China;;[Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2019

卷: 470

页码: 121-140

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 37

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:852/3916351
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司