• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Pan, Yunpeng (Pan, Yunpeng.) | Wang, Chencheng (Wang, Chencheng.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

CPCI-S EI Scopus SCIE PubMed

摘要:

BackgroundBiomedical semantic indexing is important for information retrieval and many other research fields in bioinformatics. It annotates biomedical citations with Medical Subject Headings. In face of unbalanced category distribution in the training data, sampling methods are difficult to apply for semantic indexing task.ResultsIn this paper, we present a novel deep serial multi-task learning model. The primary task treats the biomedical semantic indexing as a multi-label text classification issue that considers the relations of the labels. The auxiliary task is a regression task that predicts the MeSH number of the citation and provides hints for the network to make it converge faster. The experimental results on the BioASQ-Task5A open dataset show that our model outperforms the state-of-the-art solution MTI, proposed by the US National Library of Medicine. Further, it not only achieves the highest precision among all the solutions in BioASQ-Task5A but also has faster convergence speed compared with some naive deep learning methods.ConclusionsRather than parallel in an ordinary multi-task structure, the tasks in our model are serial and tightly coupled. It can achieve satisfied performance without any handcrafted feature.

关键词:

Multi-label classification Data mining Word embedding Natural language processing Multi-task learning Biomedical semantic indexing

作者机构:

  • [ 1 ] [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Pan, Yunpeng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Chencheng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Pan, Yunpeng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

BMC BIOINFORMATICS

ISSN: 1471-2105

年份: 2018

卷: 19

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:327/3911717
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司