• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Kun (Fu, Kun.) | Li, Yang (Li, Yang.) | Sun, Hao (Sun, Hao.) | Yang, Xue (Yang, Xue.) | Xu, Guangluan (Xu, Guangluan.) | Li, Yuting (Li, Yuting.) | Sun, Xian (Sun, Xian.)

收录:

EI Scopus SCIE

摘要:

Ship detection plays an important role in automatic remote sensing image interpretation. The scale difference, large aspect ratio of ship, complex remote sensing image background and ship dense parking scene make the detection task difficult. To handle the challenging problems above, we propose a ship rotation detection model based on a Feature Fusion Pyramid Network and deep reinforcement learning (FFPN-RL) in this paper. The detection network can efficiently generate the inclined rectangular box for ship. First, we propose the Feature Fusion Pyramid Network (FFPN) that strengthens the reuse of different scales features, and FFPN can extract the low level location and high level semantic information that has an important impact on multi-scale ship detection and precise location of dense parking ships. Second, in order to get accurate ship angle information, we apply deep reinforcement learning to the inclined ship detection task for the first time. In addition, we put forward prior policy guidance and a long-term training method to train an angle prediction agent constructed through a dueling structure Q network, which is able to iteratively and accurately obtain the ship angle. In addition, we design soft rotation non-maximum suppression to reduce the missed ship detection while suppressing the redundant detection boxes. We carry out detailed experiments on the remote sensing ship image dataset, and the experiments validate that our FFPN-RL ship detection model has efficient detection performance.

关键词:

ship detection feature map fusion convolution neural network deep reinforcement learning

作者机构:

  • [ 1 ] [Fu, Kun]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 2 ] [Li, Yang]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 3 ] [Sun, Hao]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 4 ] [Yang, Xue]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 5 ] [Xu, Guangluan]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 6 ] [Sun, Xian]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
  • [ 7 ] [Fu, Kun]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
  • [ 8 ] [Li, Yang]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
  • [ 9 ] [Yang, Xue]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
  • [ 10 ] [Xu, Guangluan]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
  • [ 11 ] [Sun, Xian]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
  • [ 12 ] [Li, Yuting]Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Yang]Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China;;[Li, Yang]Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

REMOTE SENSING

年份: 2018

期: 12

卷: 10

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:139

JCR分区:1

被引次数:

WoS核心集被引频次: 39

SCOPUS被引频次: 44

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:183/4553919
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司