• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Lei (Lin, Lei.) | He, Zhengbing (He, Zhengbing.) | Peeta, Srinivas (Peeta, Srinivas.)

收录:

EI Scopus SCIE

摘要:

This study proposes a novel Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF) model that can learn hidden heterogeneous pairwise correlations between stations to predict station-level hourly demand in a large-scale bike-sharing network. Two architectures of the GCNN-DDGF model are explored; GCNN(reg)-DDGF is a regular GCNN-DDGF model which contains the convolution and feedforward blocks, and GCNN(rec)-DDGF additionally contains a recurrent block from the Long Short-term Memory neural network architecture to capture temporal dependencies in the bike-sharing demand series. Furthermore, four types of GCNN models are proposed whose adjacency matrices are based on various bike-sharing system data, including Spatial Distance matrix (SD), Demand matrix (DE), Average Trip Duration matrix (ATD), and Demand Correlation matrix (DC). These six types of GCNN models and seven other benchmark models are built and compared on a Citi Bike dataset from New York City which includes 272 stations and over 28 million transactions from 2013 to 2016. Results show that the GCNN(rec)-DDGF performs the best in terms of the Root Mean Square Error, the Mean Absolute Error and the coefficient of determination (R-2), followed by the GCNN(reg)-DDGF. They outperform the other models. Through a more detailed graph network analysis based on the learned DDGF, insights are obtained on the "black box" of the GCNN-DDGF model. It is found to capture some information similar to details embedded in the SD, DE and DC matrices. More importantly, it also uncovers hidden heterogeneous pairwise correlations between stations that are not revealed by any of those matrices.

关键词:

Data-driven graph filter Long Short-term Memory network Graph Convolution Neural Network Spatio-temporal demand prediction Bike sharing Deep learning

作者机构:

  • [ 1 ] [Lin, Lei]Purdue Univ, NEXTRANS Ctr, W Lafayette, IN 47906 USA
  • [ 2 ] [He, Zhengbing]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China
  • [ 3 ] [Peeta, Srinivas]Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
  • [ 4 ] [Peeta, Srinivas]Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA

通讯作者信息:

  • [Peeta, Srinivas]Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA;;[Peeta, Srinivas]Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES

ISSN: 0968-090X

年份: 2018

卷: 97

页码: 258-276

8 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 284

SCOPUS被引频次: 331

ESI高被引论文在榜: 25 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1616/4278593
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司