• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, S. (Wang, S..) (学者:王术) | Chen, Y. (Chen, Y..) | Huang, J. (Huang, J..) | Ma, J. (Ma, J..) | Lu, Y. (Lu, Y..) (学者:卢岳)

收录:

Scopus

摘要:

In China, determining which party is liable for damages or injuries resulting from a traffic crash involving both a motor vehicle and a cyclist can be challenging. Based on an analysis of traffic crash data, this paper has proposed a univariate feature selection method which can emulate human thinking and help determine the moving status of the cyclist prior to the collision. This research employed support vector machines (SVM), LDA, and artificial neural network (ANN) to classify the moving status of the cyclists. According to the analysis results, the SVM (kernel=linear) had the highest classification accuracy (81.84%). It could be used to determine if the cyclist was walking the bicycle prior to the collision. © ASCE.

关键词:

Forensic analysis; Support vector machines (SVM); Traffic crash; Univariate feature selection

作者机构:

  • [ 1 ] [Wang, S.]Beijing Key Lab of Traffic Engineering, Beijing Univ. of Technology, Beijing ST, 100124, China
  • [ 2 ] [Chen, Y.]Beijing Key Lab of Traffic Engineering, Beijing Univ. of Technology, Beijing ST, 100124, China
  • [ 3 ] [Huang, J.]Beijing Transportation Information Center, Beijing ST, 100161, China
  • [ 4 ] [Ma, J.]Texas Dept. of Transportation, Austin, TX 78717, United States
  • [ 5 ] [Lu, Y.]Beijing Key Lab of Traffic Engineering, Beijing Univ. of Technology, Beijing ST, 100124, China

通讯作者信息:

  • [Chen, Y.]Beijing Key Lab of Traffic Engineering, Beijing Univ. of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CICTP 2019: Transportation in China - Connecting the World - Proceedings of the 19th COTA International Conference of Transportation Professionals

年份: 2019

页码: 5458-5470

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:868/3902213
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司