• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | Liu, Hao (Liu, Hao.) | He, Cunfu (He, Cunfu.) (学者:何存富) | Li, Yu (Li, Yu.) | Liu, Xiucheng (Liu, Xiucheng.) (学者:刘秀成) | Li, Zibo (Li, Zibo.) | Zhang, Ruihuan (Zhang, Ruihuan.) | Lu, Haonan (Lu, Haonan.)

收录:

EI Scopus SCIE

摘要:

In this study, a novel method for predicting hardness of ferromagnetic alloy based on the magnetic Barkhausen noise (MBN) is proposed. A set of new frequency features of MBN and a new hardness prediction method are proposed. The new features are derived from the first and second derivative of the auto-regressive spectrum of MBN signal. The new automatic hardness prediction method include Bag-of-Words, principal component analysis and back propagate neural network optimized by ensemble learning. The experimental results of the hardness classification show that the new features are superior to the previous features-the misclassification rate using the new features is less than 0.67%, while the misclassification rate using the previous features is about 2%. The efficiency of the new method is also proved by hardness classification experiment. Compared with the traditional time-domain method and the previous frequency domain method, the misclassification rate of the new method decreased significantly from 25% to less than 1%. In addition, the new method is highly automatic, so it is more versatile than manual algorithms. The above characteristics make the proposed new method suitable for predicting the hardness of ferromagnetic alloys in practice.

关键词:

Derivative of the AR spectrum Hardness prediction Machine learning algorithms Magnetic Barkhausen noise Frequency feature Ferromagnetic alloy

作者机构:

  • [ 1 ] [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Hao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Yu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Zibo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Haonan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [He, Cunfu]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Xiucheng]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Zhang, Ruihuan]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 孙光民

    [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF NONDESTRUCTIVE EVALUATION

ISSN: 0195-9298

年份: 2018

期: 4

卷: 37

2 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:260

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:147/4564363
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司