• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, L. (Fu, L..) | Sun, X. (Sun, X..) | Zhao, Y. (Zhao, Y..) (学者:赵艳) | Li, Z. (Li, Z..) | Huang, J. (Huang, J..) | Wang, L. (Wang, L..)

收录:

Scopus PKU CSCD

摘要:

Video super-resolution reconstruction methods based on deep learning are often faced with the problems of long time consumption or low accuracy. A video super-resolution reconstruction method based on deep residual network is proposed. It reconstructs videos with high accuracy quickly and meets the real-time requirements for low-resolution videos. Firstly, the adaptive key frame discrimination subnet is utilized to adaptively identify key frames from the video. Then, the reconstruction results of the key frames are obtained by the high precision reconstruction subnet. For non-key frames, the reconstruction results are directly gained based on the features obtained by fusing the features of the corresponding key frame and the motion estimation features between the non-key frame and the adjacent key frame. Experiments on open datasets show that videos are fast reconstructed by the proposed method with high accuracy and robustness.

关键词:

Feature Fusion; Key Frame; Motion Estimation Feature; Super Resolution Reconstruction

作者机构:

  • [ 1 ] [Fu, L.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Sun, X.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Zhao, Y.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Li, Z.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Huang, J.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Wang, L.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Fu, L.]Faculty of Information Technology, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Pattern Recognition and Artificial Intelligence

ISSN: 1003-6059

年份: 2019

期: 11

卷: 32

页码: 1022-1031

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1838/3856330
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司