• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Jiang (Du, Jiang.) (学者:杜江) | Xu, Dengke (Xu, Dengke.) | Cao, Ruiyuan (Cao, Ruiyuan.)

收录:

Scopus SCIE

摘要:

In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods. (C) 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

关键词:

Variable selection Partially functional linear regression model Oracle property Composite quantile regression

作者机构:

  • [ 1 ] [Du, Jiang]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Cao, Ruiyuan]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Dengke]Zhejiang Agr & Forestry Univ, Dept Stat, Hangzhou 311300, Zhejiang, Peoples R China

通讯作者信息:

  • [Cao, Ruiyuan]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF THE KOREAN STATISTICAL SOCIETY

ISSN: 1226-3192

年份: 2018

期: 4

卷: 47

页码: 436-449

0 . 6 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:63

JCR分区:4

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:716/3902045
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司