• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Y. (Du, Y..) | He, M. (He, M..) | Zhao, X. (Zhao, X..)

收录:

Scopus PKU CSCD

摘要:

The task of cross-domain sentiment classification is to analyze the sentiment orientation of the target domain lacking labeled data using the source-domain data with sentiment labels. A hierarchical attention model based on Wasserstein distance is proposed in this paper. The hierarchical model is used for feature extraction by combining attention mechanism, and Wasserstein distance is used as the domain difference metric to automatically capture the domain-sharing features through adversarial training. Further auxiliary task is constructed to capture the domain-special features cooccurring with domain-sharing features. These two kinds of features are united to complete the cross-domain sentiment classification task. The experimental results on Amazon datasets demonstrate that the proposed model achieves a higher accuracy and a better stability on different cross-domain pairs. © 2019, Science Press. All right reserved.

关键词:

Attention Mechanism; Bidirectional Gated Recurrent Unit; Cross-Domain Sentiment Classification; Hierarchical Model; Wasserstein Distance

作者机构:

  • [ 1 ] [Du, Y.]Faculty of Information, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [He, M.]Faculty of Information, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Zhao, X.]Faculty of Information, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Du, Y.]Faculty of Information, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Pattern Recognition and Artificial Intelligence

ISSN: 1003-6059

年份: 2019

期: 5

卷: 32

页码: 446-454

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:307/3911684
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司