收录:
摘要:
The task of cross-domain sentiment classification is to analyze the sentiment orientation of the target domain lacking labeled data using the source-domain data with sentiment labels. A hierarchical attention model based on Wasserstein distance is proposed in this paper. The hierarchical model is used for feature extraction by combining attention mechanism, and Wasserstein distance is used as the domain difference metric to automatically capture the domain-sharing features through adversarial training. Further auxiliary task is constructed to capture the domain-special features cooccurring with domain-sharing features. These two kinds of features are united to complete the cross-domain sentiment classification task. The experimental results on Amazon datasets demonstrate that the proposed model achieves a higher accuracy and a better stability on different cross-domain pairs. © 2019, Science Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: