• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Kang (Wang, Kang.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Jia, Chao (Jia, Chao.) | Yang, Shengxiang (Yang, Shengxiang.) | Li, Miqing (Li, Miqing.) | Li, Yang (Li, Yang.)

收录:

EI Scopus SCIE

摘要:

The production process of ground granulated blast furnace slag (GGBS) aims to produce products of the best grade and the highest yields. However, grade and yields are two competing objectives which can not be optimized at the same time by one single solution. Meanwhile, the production process is a multivariable strong coupling complicated nonlinear system. It is hard to establish the accurate mechanism model of this system. Considering above problems, we formulate the GGBS production process as an multiobjective optimization problem, introduce a least square support vector machine method based on particle swarm optimization to build the data-based system model and solve the corresponding multiobjective optimization problem by several multiobjective optimization evolutionary algorithms. Simulation example is presented to illustrate the performance of the presented multiobjective optimization scheme in GGBS production process.

关键词:

Multiobjective optimization Ground granulated blast furnace slag MOEA PSO-based LS-SVM

作者机构:

  • [ 1 ] [Wang, Kang]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 2 ] [Jia, Chao]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 3 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Shengxiang]De Montfort Univ, Sch Comp Sci & Informat, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England
  • [ 5 ] [Li, Miqing]Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
  • [ 6 ] [Li, Yang]CUC, Sch Int Studies, Beijing 100024, Peoples R China

通讯作者信息:

  • 李晓理

    [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SOFT COMPUTING

ISSN: 1432-7643

年份: 2018

期: 24

卷: 22

页码: 8177-8186

4 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:723/3915906
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司