• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yuan, Ye (Yuan, Ye.) | Xun, Guangxu (Xun, Guangxu.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Zhang, Aidong (Zhang, Aidong.)

收录:

Scopus SCIE PubMed

摘要:

Background: Epilepsy is a neurological disease characterized by unprovoked seizures in the brain. The recent advances in sensor technologies allow researchers to analyze the collected biological records to improve the treatment of epilepsy. Electroencephalogram (EEG) is the most commonly used biological measurement to effectively capture the abnormalities of different brain areas during the EEG seizures. To avoid manual visual inspection from long-term EEG readings, automatic epileptic EEG seizure detection has become an important research issue in bioinformatics. Results: We present a multi-context learning approach to automatically detect EEG seizures by incorporating a feature fusion strategy. We generate EEG scalogram sequences from the EEG records by utilizing waveform transform to describe the frequency content over time. We propose a multi-stage unsupervised model that integrates the features extracted from the global handcrafted engineering, channel-wise deep learning, and EEG embeddings, respectively. The learned multi-context features are subsequently merged to train a seizure detector. Conclusions: To validate the effectiveness of the proposed approach, extensive experiments against several baseline methods are carried out on two benchmark biological datasets. The experimental results demonstrate that the representative context features from multiple perspectives can be learned by the proposed model, and further improve the performance for the task of EEG seizure detection.

关键词:

Feature extraction Context learning Epileptic seizure Deep learning Electroencephalogram

作者机构:

  • [ 1 ] [Yuan, Ye]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 2 ] [Jia, Kebin]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China
  • [ 3 ] [Yuan, Ye]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 4 ] [Jia, Kebin]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 5 ] [Yuan, Ye]Beijing Univ Technol, Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 6 ] [Jia, Kebin]Beijing Univ Technol, Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 7 ] [Xun, Guangxu]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA
  • [ 8 ] [Zhang, Aidong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY USA

通讯作者信息:

  • 贾克斌

    [Jia, Kebin]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing, Peoples R China;;[Jia, Kebin]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

BMC SYSTEMS BIOLOGY

ISSN: 1752-0509

年份: 2018

卷: 12

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:193

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 32

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1303/3892003
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司