• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pan, Erzhuang (Pan, Erzhuang.) | Jin, Yuhong (Jin, Yuhong.) | Zhao, Chenchen (Zhao, Chenchen.) | Jia, Miao (Jia, Miao.) | Chang, Qianqian (Chang, Qianqian.) | Jia, Mengqiu (Jia, Mengqiu.)

收录:

EI Scopus SCIE

摘要:

Sn4P3 is one of the most promising anode materials for sodium ion batteries (SIBs) owning to the alloying reaction of P and Sn with Na to form Na3P and Na15Sn4, which is beneficial to achieve a high specific capacity, especially for the high volumetric capacity (6650 mAh cm(-3)). However, the high capacities generate large volume changes, which pulverize the anode material, resulting in poor cycling stability. This restricts its practical applications for SIBs. Here, the dopamine-derived N-doped carbon encapsulating hollow Sn4P3 microspheres (hollow Sn4P3@C) composites are prepared by an in-situ self-polymerization of dopamine on the surface of hollow SnO2 microspheres followed by a carbonization process and a low temperature phosphorization using NaH2PO2 as P source. The results of the structural and morphological characterization can be demonstrated that as-prepared hollow Sn4P3@C composites are constructed by hollow Sn4P3 microspheres with the ultrathin N-doped carbon coating. The as-prepared samples are tested as the anode materials for SIBs. Compared with bared hollow Sn4P3 microspheres, hollow Sn4P3@C composites exhibit better electrochemical sodium storage performance. As a result, hollow Sn4P3@C composites deliver the first discharge and charge specific capacities of 840 and 587 mAh g(-1) with a high initial coulombic efficiency of 70% at a current density of 0.2 Ag-1. Moreover, hollow Sn4P3@C composites display superior rate capabilities of 555, 438, 339, 239, 157 and 92 mAh g(-1) at 0.2 Ag-1, 0.5 Ag-1, 1 Ag-1, 2 Ag-1, 5 Ag-1 and 10 Ag-1, respectively. Meanwhile, hollow Sn4P3@C composites show a high discharge capacity of 372 mAh g(-1) at 0.2 A g(-1) after long 200 cycles. A detailed electrochemical kinetic analysis indicates that energy storage for Na thorn in Sn4P3 is due to a pseudocapacitive mechanism. The good electrochemical sodium storage performance of as-prepared hollow Sn4P3@C composites may be attributed to the introduction of N-doped carbon coating and unique hollow structure. Therefore, our work provides a new structure model for the development of new anode materials for SIBs. (C) 2018 Elsevier B.V. All rights reserved.

关键词:

Anode materials N-doped carbon Hollow Sn4P3 microspheres Sodium ion batteries Dopamine

作者机构:

  • [ 1 ] [Pan, Erzhuang]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 2 ] [Jia, Miao]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 3 ] [Chang, Qianqian]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 4 ] [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 5 ] [Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Chenchen]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China;;[Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF ALLOYS AND COMPOUNDS

ISSN: 0925-8388

年份: 2018

卷: 769

页码: 45-52

6 . 2 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:260

JCR分区:1

被引次数:

WoS核心集被引频次: 41

SCOPUS被引频次: 43

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:359/3900678
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司