• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Qing (Guo, Qing.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Yan, Xiao Ke (Yan, Xiao Ke.) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

CPCI-S Scopus SCIE

摘要:

Alkali metal heat pipes play significant role in various high-temperature engineering applications because of their excellent heat transfer capacity. Inclination angle is one of major factors which significantly affect start-up and heat transfer characteristics especially for thermosiphons. A sodium-potassium alloy (Na-K) gravity-driven heat pipe (GHP), in which the content of potassium in Na-K is wt. 55%, was fabricated to study the effect of inclination angle on start-up and heat transfer capacities of high-temperature GHPs. The Na-K GHPs was fixed by the adjusting bracket in 9 inclination angles (0 degrees, 10 degrees, 20 degrees, 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees and 80 degrees). Outside wall temperature was measured by eleven thermocouples which calibrated by the China Institute of Metrology prior to using them in the experiments. Results show that inclination angle has a significant impact on start-up and heat transfer performances of the Na-K GHP because of the impact of gravity on the two-phase flow inside the heat pipe and effective heating area in the evaporator. Start-up and heat transfer characteristics are dramatically improved and temperature difference significantly decreases as the inclination angle increases from 0 degrees to 50 degrees, but slightly decreases when the inclination angle exceeds 60 degrees.

关键词:

作者机构:

  • [ 1 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing, Peoples R China
  • [ 5 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing, Peoples R China
  • [ 6 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing, Peoples R China
  • [ 8 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing, Peoples R China
  • [ 9 ] [Yan, Xiao Ke]Natl Inst Metrol, Beijing, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

HEAT TRANSFER ENGINEERING

ISSN: 0145-7632

年份: 2018

期: 17-18

卷: 39

页码: 1627-1635

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:76

JCR分区:3

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:36/3279091
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司