• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li Jian (Li Jian.) | Wang Zheng (Wang Zheng.) | Wang Tao (Wang Tao.) | Tang Jinghao (Tang Jinghao.) | Yang Yuguang (Yang Yuguang.) | Zhou Yihua (Zhou Yihua.)

收录:

EI Scopus SCIE

摘要:

In order to improve the detection efficiency of Android malicious application, an Android malware detection system based on feature fusion is proposed on three levels. Feature fusion especially emphasizes on ten categories, which combines static and dynamic features and includes 377 features for classification. In order to improve the accuracy of malware detection, attribute subset selection and principle component analysis are used to reduce the dimensionality of fusion features. Random forest is used for classification. In the experiment, the dataset includes 43,822 benign applications and 8,454 malicious applications. The method can achieve 99.4% detection accuracy and 0.6% false positive rate. The experimental results show that the detection method can improve the malware detection efficiency in Android platform.

关键词:

Feature fusion Android security Machine learning Malware detection Information security

作者机构:

  • [ 1 ] [Li Jian]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
  • [ 2 ] [Wang Zheng]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
  • [ 3 ] [Wang Tao]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
  • [ 4 ] [Tang Jinghao]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
  • [ 5 ] [Yang Yuguang]Beijing Univ Technol, Sch Comp Sci, Beijing 100124, Peoples R China
  • [ 6 ] [Zhou Yihua]Beijing Univ Technol, Sch Comp Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang Zheng]Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2018

期: 6

卷: 27

页码: 1206-1213

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:786/4285856
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司