• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qiu, Tao (Qiu, Tao.) | Wang, Kaixin (Wang, Kaixin.) | Lei, Yan (Lei, Yan.) | Wu, Chenglin (Wu, Chenglin.) | Liu, Yuwei (Liu, Yuwei.) | Chen, Xinyu (Chen, Xinyu.) | Guo, Peng (Guo, Peng.)

Indexed by:

Scopus SCIE

Abstract:

The submerged jet is a common phenomenon in a fluid machinery that controls fluid flow by adjusting the back pressure with constant inlet pressure during the energy transforming process, and it has different characteristic with that by adjusting the total differential pressure. This work investigates the submerged cavitation jet flow inside a narrow cylindrical orifice under condition of varied back pressure. An optical test rig is to examine the submerged jet, and a three-dimension numerical model is to investigate the details. The results reveal that for constant inlet pressure, as the back pressure declines, cavitation jet occurs. The development process of the impingement force is divided into three periods. Period I, the impingent force monotonically increases. Period II, from the choking point to the cavitation jet starting point, the impingent force slightly decreases. Period III the impingent force rises again. During the choking period, the input energy is unchanged, but the impact force declines. This is because the turbulence kinetic energy increases resulting in pressure energy decrease. For given pressure boundaries, the impingent force rises as the standoff distance of the target plate increases, and the standoff has fewer influences on the impingent force when the target plate is farther. (C) 2018 Elsevier Ltd. All rights reserved.

Keyword:

Back pressure Cavitation Impingement force Diesel fuel Submerged jet

Author Community:

  • [ 1 ] [Qiu, Tao]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Kaixin]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Lei, Yan]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Chenglin]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Xinyu]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Peng]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Yuwei]China Univ Min & Technol, Sch Mech Elect & Informat Engn, Beijing 100083, Peoples R China

Reprint Author's Address:

  • [Qiu, Tao]Beijing Univ Technol, Coll Energy & Environm Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGY

ISSN: 0360-5442

Year: 2018

Volume: 162

Page: 964-976

9 . 0 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:156

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:699/5470700
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.