• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Z. (Yang, Z..) (学者:杨震) | Lei, J. (Lei, J..) | Wang, J. (Wang, J..) | Zhang, X. (Zhang, X..) | Guo, J. (Guo, J..) (学者:郭瑾)

收录:

Scopus

摘要:

As a simple classification method VSM has been widely applied in text information processing field. There are some problems for traditional VSM to select a refined vector model representation, which can make a good tradeoff between complexity and performance, especially for incremental text mining. To solve these problems, in this paper, several improvements, such as VSM based on improved TF, TFIDF and BM25, are discussed. And then maximum mutual information feature selection is introduced to achieve a low dimension VSM with less complexity, and at the same time keep an acceptable precision. The experimental results of spam filtering and short messages classification shows that the algorithm can achieve higher precision than existing algorithms under same conditions. © 2008 American Institute of Physics.

关键词:

Incremental Text Classification; Short Messages Classification; Spam Filtering; VSM

作者机构:

  • [ 1 ] [Yang, Z.]School of Computer, Beijing University of Technology, Beijing, 100022, China
  • [ 2 ] [Lei, J.]School of Computer, Beijing University of Technology, Beijing, 100022, China
  • [ 3 ] [Wang, J.]School of Information, Central University of Finance and Economics, Beijing, 100081, China
  • [ 4 ] [Zhang, X.]School of Computer, Beijing University of Technology, Beijing, 100022, China
  • [ 5 ] [Guo, J.]School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

AIP Conference Proceedings

ISSN: 0094-243X

年份: 2008

卷: 1060

页码: 369-373

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:401/5062446
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司