• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Guo, Ya-Nan (Guo, Ya-Nan.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

Scopus SCIE

摘要:

In this paper, an efficient self-organizing recurrent radial basis function neural network (RRBFNN), is developed for nonlinear system modeling. In RRBFNN, a two-steps learning approach is introduced during the learning process. In the first step, the objective is to find the optimal set of parameters using an improved Levenberg-Marquardt (LM) algorithm. In the second step, an efficient information-oriented algorithm (IOA), without any thresholds, is developed to optimize the structure of RRBFNN. The hidden neurons in this IOA-based RRBFNN (IOA-RRBFNN) are generated or pruned automatically to reduce the computational complexity and improve the generalization power. Meanwhile, a theoretical analysis on the learning convergence of IOA-RRBFNN is given in details. To demonstrate the merits of IOA-RRBFNN for modeling nonlinear systems, several benchmark problems and a real world application are present with comparisons against other existing methods. Some promising results are reported in this study, indicating that the proposed IOA-RRBFNN performs prediction accuracy in the case of fast learning speed and compact structure. (C) 2017 Elsevier B.V. All rights reserved.

关键词:

Improved Levenberg-Marquardt algorithm Information-oriented algorithm Nonlinear system modeling Recurrent radial basis function neural network

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Ya-Nan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Ya-Nan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Han, Hong-Gui]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 8 ] [Guo, Ya-Nan]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 9 ] [Qiao, Jun-Fei]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED SOFT COMPUTING

ISSN: 1568-4946

年份: 2018

卷: 71

页码: 1105-1116

8 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:161/3910336
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司