• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Mi (Li, Mi.) (学者:栗觅) | Chen, Huan (Chen, Huan.) | Zhang, Ming (Zhang, Ming.) | Liu, Xingwang (Liu, Xingwang.) | Lu, Shengfu (Lu, Shengfu.)

收录:

SCIE

摘要:

The classification of biomedical information plays an important role in the prediction and prevention of various physiological and psychological diseases. SVM is widely used in biomedical information classification due to its strong practicability in solving data classification problems such as small sample, nonlinearity and high dimension. To improve the classification accuracy of SVM in biomedical information, a particle swarm optimization algorithm based on multi-population mutation (MsM-PSO) is proposed in this paper. MsM-PSO uses multiple subpopulations to search the optimal solution in parallel. When nearly half of the subpopulations are clustered, The Gaussian mutation is performed on the optimal particle in each subpopulation, while the feedback mutations are performed on the two remaining poorer particles in each subpopulation. Then the improved PSO algorithm is used to optimize the parameters of the SVM model. A new classification method (MsM-PSO-SVM) is proposed. To verify the classification performance of the MsM-PSO-SVM, this article classifies biomedical data. The test result shows that the proposed MsM-PSO-SVM has achieved satisfactory classification result in biomedical prediction.

关键词:

Particle Swarm Optimization Mutation Support Vector Machine Multi-Swarm Biomedical Information

作者机构:

  • [ 1 ] [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Huan]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ming]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xingwang]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China
  • [ 6 ] [Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Mi]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 8 ] [Chen, Huan]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 9 ] [Zhang, Ming]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 10 ] [Liu, Xingwang]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China
  • [ 11 ] [Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China

通讯作者信息:

  • 栗觅

    [Li, Mi]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China;;[Lu, Shengfu]Beijing Univ Technol, Fac Informat Technol, Dept Automat, Beijing 100124, Peoples R China;;[Lu, Shengfu]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Li, Mi]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China;;[Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing 100024, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS

ISSN: 2156-7018

年份: 2018

期: 8

卷: 8

页码: 1619-1626

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:167

JCR分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1016/3899420
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司