Indexed by:
Abstract:
The small-world architecture has gained considerable attention in anatomical brain connectivity studies. However, how to adequately quantify small-worldness in diffusion networks has remained a problem. We addressed the limits of small-world measures and defined new metric indices: the small-world efficiency (SWE) and the small-world angle (SWA), both based on the tradeoff between high global and local efficiency. To confirm the validity of the new indices, we examined the behavior of SWE and SWA of networks based on the Watts-Strogatz model as well as the diffusion tensor imaging (DTI) data from 75 healthy old subjects (aged 50-70). We found that SWE could classify the subjects into different age groups, and was correlated with individual performance on the WAIS-IV test. Moreover, to evaluate the sensitivity of the proposed measures to network, two network attack strategies were applied. Our results indicate that the new indices outperform their predecessors in the analysis of DTI data.
Keyword:
Reprint Author's Address:
Email:
Source :
EXPERIMENTAL BRAIN RESEARCH
ISSN: 0014-4819
Year: 2018
Issue: 10
Volume: 236
Page: 2677-2689
2 . 0 0 0
JCR@2022
ESI Discipline: NEUROSCIENCE & BEHAVIOR;
ESI HC Threshold:189
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3