收录:
摘要:
As through-silicon vias (TSVs) are key structural elements of 3D integration and packaging, creep deformation, which causes TSV-Cu protrusion, is critical for TSV reliability. Here, the effect of the diffusion creep behavior on the TSV-Cu protrusion morphology is analyzed using experiment and simulation. The protrusion morphology of TSV-Cu after annealing treatment is examined using a white light interferometer. The diffusion creep mechanism of TSV-Cu is determined by observation of the TSV-Cu microstructure using a scanning electron microscopy and a focused ion beams. The TSV-Cu grain size is measured using an electron backscatter diffraction system. The diffusion creep rate model of TSV-Cu is deduced based on the energy balance theory and is introduced into the finite element model to clarify the influence of diffusion creep on TSV-Cu protrusion. It is determined that the diffusion creep of TSV-Cu is mainly caused by grain boundary diffusion and grain boundary sliding. The diffusion creep strain rate is positively correlated with the ambient temperature and the external load but negatively correlated with the grain size. The amount of TSV-Cu protrusion increases with decreasing grain size. The simulation results show that the "donut"-shaped protrusion morphology is more likely to occur in TSV-Cu with smaller grain sizes near the sidewall region of the via.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
ISSN: 0957-4522
年份: 2018
期: 19
卷: 29
页码: 16305-16316
2 . 8 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:260
JCR分区:3