• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yanchao, S. (Yanchao, S..) | Xu, Q. (Xu, Q..) | Minzheng, J. (Minzheng, J..) | Jing, B. (Jing, B..)

收录:

Scopus

摘要:

Deep belief network applying unsupervised methods of greedy layer training, from the training set automatic feature extraction value, will cause the error by layer transfer, thus affecting the accuracy of the model prediction, in order to solve this problem, proposed using conjugate gradient algorithm in gradient descent can accelerate the convergence of ideas, improvement of the restricted Boltzmann machine network algorithm in the depth of confidence, first from the complexity of the algorithm and the reconstruction error analysis of improved model differences and advantages, and classify the verification on the MNIST data set, and a detailed analysis of the feasibility of the improved model and efficiency, the experimental results shows the feature extraction ability improved deep belief network model has better and classification results. © 2018 IEEE.

关键词:

deep belief networks; deep learning; Machine learning

作者机构:

  • [ 1 ] [Yanchao, S.]School of Mechanical Electronic Information Engineering, China University of Mining Technology, Beijing, 10083, China
  • [ 2 ] [Xu, Q.]School of Mechanical Electronic Information Engineering, China University of Mining Technology, Beijing, 10083, China
  • [ 3 ] [Minzheng, J.]Department of Information Engineering, Beijing Polytechnic College, Beijing, 100042, China
  • [ 4 ] [Jing, B.]Beijing Information Science Techonology University, Bejing, 100192, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACIS International Conference on Computer and Information Science, ICIS 2018

年份: 2018

页码: 825-830

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:792/3916184
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司