• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wen (Zhang, Wen.) (学者:张文) | Du, Yuhang (Du, Yuhang.) | Yang, Ye (Yang, Ye.) | Yoshida, Taketoshi (Yoshida, Taketoshi.)

收录:

SSCI EI Scopus SCIE

摘要:

Traditional recommendation techniques present various methods to measure similarity of users and items to characterize the preferences. However, different similarity measure focus on different aspects of user-item rating list and, this may cause incomplete information leveraged by similarity measure in users' preference characterization leading to low accuracy on recommendation. This paper proposes a deep learning approach, i.e. DeRec, to learn the latent item association from user-item rating list directly for predictive recommendation without employing a similarity measure. The loss of each item is weighted by its historical probability rated by users' past preferences, in which a deep learning neural network is adopted to predict a user's potential interest on the items using the user's historical items as input. We also develop two strategies to produce input vectors and output vectors as sampling by random (Ran-Strategy) and sampling by distribution (Pro-Strategy) to train the deep neural network with considering the sequential characteristics of items rated by users. Experiments on the App dataset and the MovieLens dataset demonstrate that the proposed DeRec approach outperforms traditional collaborative filtering methods in recommending Apps and movies in both MAP and MRR measures.

关键词:

Recommender system Weighted loss function DeRec Data-driven approach Deep neural network

作者机构:

  • [ 1 ] [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 3 ] [Du, Yuhang]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 4 ] [Yang, Ye]Japan Adv Inst Sci & Technol, Sch Knowledge Sci, 1-1 Ashahidai, Nomi City, Ishikawa 9231292, Japan
  • [ 5 ] [Yoshida, Taketoshi]Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA

通讯作者信息:

  • 张文

    [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China;;[Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS

ISSN: 1567-4223

年份: 2018

卷: 31

页码: 12-23

6 . 0 0 0

JCR@2022

ESI学科: ECONOMICS & BUSINESS;

ESI高被引阀值:147

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:151/3918107
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司