• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, X. (Han, X..) | Yu, J. (Yu, J..) | Sun, W. (Sun, W..) (学者:孙威)

收录:

Scopus

摘要:

Non-negative Matrix Factorization is the most typical model for hyperspectral image super-resolution. However, the non-negative restriction on the coefficients limited the efficiency of dictionary expression. Facing this problem, a new hyperspectral image super-resolution method based on non-factorization sparse representation and dictionary learning (called NFSRDL) is proposed in this paper. Firstly, an efficient spectral dictionary learning method is specifically adopted for the construction of spectral dictionary using some low spatial resolution hyperspectral images in the same or similar areas. Then, the sparse codes of the high-resolution multi-bands image with respect to the learned spectral dictionary are estimated using the alternating direction method of multipliers (ADMM) without non-negative constrains. Experimental results on different datasets demonstrate that, compared with the related state-of-the-art methods, our method can improve PSNR over 1.3282 and SAM over 0.0476 in the same scene, and PSNR over 3.1207 and SAM over 0.4344 in the similar scenes. © 2017 IEEE.

关键词:

Dictionary learning; Hyperspectral image; Non-factorization sparse representation; Super-resolution

作者机构:

  • [ 1 ] [Han, X.]State Key Lab. of Intelligence Technology and Systems, Tsinghua National Lab. for Information Science and Technology, Dept. of Electronic Engineering, Tsinghua Univ., Beijing, 100084, China
  • [ 2 ] [Yu, J.]Faculty of Information Technology, Beijing Univ. of Technology, Beijing, 100124, China
  • [ 3 ] [Sun, W.]State Key Lab. of Intelligence Technology and Systems, Tsinghua National Lab. for Information Science and Technology, Dept. of Electronic Engineering, Tsinghua Univ., Beijing, 100084, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Proceedings - International Conference on Image Processing, ICIP

ISSN: 1522-4880

年份: 2018

卷: 2017-September

页码: 963-966

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:212/3918062
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司