• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Zhang, Jingling (Zhang, Jingling.) | Li, Mingai (Li, Mingai.) (学者:李明爱) | Wang, Meijie (Wang, Meijie.)

收录:

EI Scopus SCIE

摘要:

Most of the current semantic segmentation approaches have achieved state-of-the-art performance relying on fully convolutional networks. However, the consecutive operations such as pooling or convolution striding lead to spatially disjointed object boundaries. We present a dense boundary regression architecture (DBRS2), which aims to use boundary cues to aid high-level semantic segmentation task. Specifically, we first propose a multilevel guided low-level boundary (MG-LB) learning method, where we exploit multilevel convolutional features as guidance for low-level boundary detection. The predicted MG-LB boundaries are used to enable consistent spatial grouping and enhance precise adherence to segment boundaries. Then, we present a significant global energy model based on boundary penalty and appearance penalty, which are respectively defined on the predicted boundaries and coarse segmentations obtained by the DeepLabv3 network. Finally, the refined segmentations are regressed by minimizing the global energy model. Extensive experiments over PASCAL VOC 2012, ADE20K, CamVid, and BSD500 datasets demonstrate that the proposed approach can obtain state-of-the-art performance on both semantic segmentation and boundary detection tasks. (C) 2018 SPIE and IS&T

关键词:

semantic segmentation fully convolutional networks boundary detection

作者机构:

  • [ 1 ] [Yang, Jinfu]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Mingai]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Wang, Meijie]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Yang, Jinfu]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Zhang, Jingling]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 7 ] [Li, Mingai]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 8 ] [Wang, Meijie]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Jingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Zhang, Jingling]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF ELECTRONIC IMAGING

ISSN: 1017-9909

年份: 2018

期: 5

卷: 27

1 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:4

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:146/4297909
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司