• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Zhou, Hongbiao (Zhou, Hongbiao.)

收录:

EI Scopus SCIE CSCD

摘要:

Modeling of energy consumption (EC) and effluent quality (EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process (WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network (DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity. The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DP-AFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.

关键词:

wastewater treatment process (WWTP) improved Levenberg-Marquardt algorithm energy consumption (EC) effluent quality (EQ) fuzzy neural network Density peaks clustering

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Intelligence Syst Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Hongbiao]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Zhou, Hongbiao]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Intelligence Syst Lab, Beijing 100124, Peoples R China;;[Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE-CAA JOURNAL OF AUTOMATICA SINICA

ISSN: 2329-9266

年份: 2018

期: 5

卷: 5

页码: 968-976

1 1 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 40

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:214/4285229
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司