• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, J. (Li, J..) | Li, L. (Li, L..) | Zhang, Y. (Zhang, Y..) (学者:张勇) | Wang, P. (Wang, P..) | Zuo, G. (Zuo, G..)

收录:

Scopus PKU CSCD

摘要:

To improve the classification accuracy of convolution neural network similar to conditional deep learning network (CDLN), a method of joint training with multiple classifiers was proposed in this paper. When training the network, all the error signals of the classifiers were applied to update weights by Back Propagation. In the experiments, CDLN-L and CDLN-A based on LeNet-5 and AlexNet were studied on the MINIST, CIFAR-100 and Pascal Voc databases, and an increase of 4.39% in classification accuracy was achieved. The experiments demonstrate that the proposed method can improve the accuracy of the network similar to CDLN. © 2018, Editorial Department of Journal of Beijing University of Technology. All right reserved.

关键词:

Classification accuracy; Conditional deep learning network (CDLN); Convolution neural network; Deep learning; Image classification; Joint training by multiple classifiers (JTMC); Multiple classifier

作者机构:

  • [ 1 ] [Li, J.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Li, J.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China
  • [ 3 ] [Li, L.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 4 ] [Li, L.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China
  • [ 5 ] [Zhang, Y.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 6 ] [Zhang, Y.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China
  • [ 7 ] [Wang, P.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 8 ] [Wang, P.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China
  • [ 9 ] [Zuo, G.]Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
  • [ 10 ] [Zuo, G.]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124, China

通讯作者信息:

  • [Zuo, G.]Faculty of Information Technology, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2018

期: 10

卷: 44

页码: 1291-1296

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:195/4298008
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司