• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Meng, Xi (Meng, Xi.) | Li, Wenjing (Li, Wenjing.)

收录:

EI Scopus SCIE

摘要:

In this paper, a novel incremental radial basis function (RBF) neural network is proposed for nonlinear systems modeling. The hidden layer is constructed dynamically on the basis of the neuronal activity (NA), which is measured by the local field potential (LFP) and the average firing rate (AFR), with the goal of enhancing the structural compactness. Simultaneously, a modified second-order algorithm is utilized to tram the neuronal activity-based RBF (NARBF) neural network, which can decrease the convergence time and improve the generalization performance. Then, three benchmark nonlinear system modeling simulations are employed to evaluate the proposed NARBF neural network, indicating that the proposed neural network can obtain good generalization performance with a compact structure after fast training. Finally, the NARBF neural network is applied to wastewater treatment process modeling, which demonstrates that the proposed algorithm can predict the key water quality variable precisely.

关键词:

RBF neural networks Second-order training Incremental Nonlinear system modeling Neuronal activity

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Meng, Xi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 5 ] [Meng, Xi]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 6 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 302

页码: 1-11

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 46

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:553/3908283
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司