• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Qiang (Han, Qiang.) (Scholars:韩强) | Wen, Jianian (Wen, Jianian.) | Zhong, Zilan (Zhong, Zilan.) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力)

Indexed by:

Scopus SCIE

Abstract:

Sliding friction bearings are effective passive devices to mitigate the seismic responses of structures. Extensive researches have been conducted on sliding bearings. However, most previous studies were based on the assumption that the effects of frictional heating are negligible. A three-dimensional thermal-mechanical-coupled finite element (FE) model of the friction pendulum system (FPS) was developed in this study. Good agreements between the numerical results and the data measured in the previous tests, in terms of the force-displacement curves and temperature time-histories, indicate that the proposed FE model can predict the response of the FPS. Based on the developed FE model, the surface temperature distribution, the effective stiffness and the energy dissipation of the double concave friction pendulum and multiple friction pendulum bearings were investigated and compared. In addition, the thermal states of the sliding bearings in the bridge during earthquake were evaluated. The numerical results indicate that the temperature rise in the sliding bearings leads to the degradation of the effective stiffness and less energy dissipation. The relative displacements of the bearings increase considering the frictional heating effects in the bearings. If the frictional heating of the bearings is ignored, the peak bearing displacements will be underestimated.

Keyword:

Friction sliding bearings thermal-mechanical model frictional heating polytetrafluoroethylene seismic isolation

Author Community:

  • [ 1 ] [Han, Qiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wen, Jianian]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Zilan]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 韩强

    [Han, Qiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS

ISSN: 0219-4554

Year: 2018

Issue: 8

Volume: 18

3 . 6 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:156

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:572/5287801
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.