收录:
摘要:
Drill strings are one of the most. significant rotor components employed in oil and gas exploitation. In this paper, an improved dynamical model of drill-string-like pipes conveying fluid is developed by taking into account the axial spin, fluid-structure interaction (FSI), damping as well as curvature and inertia nonlinearities. The partial differential equations of motion are derived by two sequential Euler angles and the Hamilton principle and then directly handled by the multiple scales method. The nonlinear amplitudes, frequencies and whirling mode shapes are all investigated towards various system parameters to display the nonlinear dynamical characteristics of such a special rotor system coupled with FSI. It is revealed that the nonlinear amplitudes and frequencies are explicitly dependent on the spinning speed, while the flowing fluid mainly contributes to the linear frequencies, and consequently influences the nonlinear amplitudes and frequencies. The PSI effect and axial spin can both improve the forward procession mode and suppress the backward one, while both procession modes will be suppressed by the viscoelastic damping. The pipe will ultimately present a forward as well as decayed whirling motion for the fundamental mode.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
INTERNATIONAL JOURNAL OF APPLIED MECHANICS
ISSN: 1758-8251
年份: 2018
期: 7
卷: 10
3 . 5 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:156
JCR分区:3