收录:
摘要:
E-mail messages can be modeled as semi-structured documents that consist of a set of classes and a number of variable length free-text. Thus, many text mining techniques can be used to develop a personal e-mail filtering and management system. This paper addresses a text mining agents based architecture, in which two kinds of text mining agents: USPC (uncertainty sampling based probabilistic classifier) and R2L (rough relation learning) are used cooperatively, for personal e-mail filtering and management. © Springer-Verlag Berlin Heidelberg 2002.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN: 0302-9743
年份: 2002
卷: 2412
页码: 329-336
语种: 英文
JCR分区:3