• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Yan, Shuo (Yan, Shuo.) | You, Huanling (You, Huanling.) | Dong, Yan (Dong, Yan.) | Li, Yong (Li, Yong.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Gu, Rentao (Gu, Rentao.)

收录:

EI Scopus SCIE

摘要:

The expressway is extremely important to transportation, but high road-surface temperatures (RST) can cause many traffic accidents. Most of the hourly RST prediction models are based on numerical methods, but the parameters are difficult to determine. Statistical methods cannot achieve the desired accuracy. To address these problems, this paper proposes a machine learning algorithm that utilizes gradient-boosting to assemble a ReLU (rectified linear unit)/softplus Extreme Learning Machine (ELM). By using historical data from the airport and Badaling expressways collected between November 2012 and September 2014, sigmoid ELM, ReLU ELM, soft plus ELM, ReLU gradient ELM boosting (GBELM) and softplus GBELM were applied for RST forecasting, RMSE (root mean squared error), PCC (Pearson Correlation Coefficient), and the accuracy of these methods were analyzed. The experimental results show that ReLU/softplus can improve the performance of traditional ELM, and gradient boosting can further improve its performance. Thus, we obtain a more accurate model that utilizes GBELM with ReLU/softplus to forecast RST. For the airport expressway, our proposed model achieves an RMSE within 3 degrees C, an accuracy of 81.8% and a PCC of 0.954. For the Badaling expressway, our model achieves an RMSE within 2 degrees C, an accuracy of 87.4% and a PCC of 0.949.

关键词:

Gradient boosting Prediction Road surface temperature Neural networks

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Shuo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yong]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 5 ] [You, Huanling]China Meteorol Adm, Inst Urban Meteorol, Beijing 100089, Peoples R China
  • [ 6 ] [You, Huanling]Beijing Meteorol Serv Ctr, Beijing 100089, Peoples R China
  • [ 7 ] [Dong, Yan]Beijing Meteorol Serv Ctr, Beijing 100089, Peoples R China
  • [ 8 ] [Lang, Jianlei]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 9 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Gu, Rentao]Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing Lab Adv Informat Networks, Beijing 100876, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMPUTERS IN INDUSTRY

ISSN: 0166-3615

年份: 2018

卷: 99

页码: 294-302

1 0 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 29

SCOPUS被引频次: 38

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:359/3906375
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司