• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, C. (Liu, C..) (学者:刘超) | Zhong, N. (Zhong, N..)

收录:

Scopus

摘要:

Inductive Logic Programming (ILP), as any other machine learning or KDD methods, has to deal with imperfect data when applied to real-world problems. Granular Computing (GrC) is a superset of various theories (such as rough sets, fuzzy sets and interval computation) used to handle incompleteness, uncertainty, vagueness, etc. in information systems. This paper investigates the feasibility of applying GrC (especially the rough set theory) to deal with imperfect data in ILP. We list various kinds of imperfect data in ILP (including noise data, too sparse data, missing data, indiscernible data, and too strict bias). For each kind of imperfect data, we try to point out the resulting problem and the potential solution using GrC (or a particular form of GrC such as the rough set theory). The presentation includes formalisms suggested by the authors or other researchers, as well as some general ideas which may give rise to more concrete results in future research.

关键词:

Granular Computing (GrC); ILP (Inductive Logic Programming); Imperfect data; Rough Set Theory

作者机构:

  • [ 1 ] [Liu, C.]School of Computer Science, Beijing Polytechnic University, Beijing 100022, China
  • [ 2 ] [Zhong, N.]Dept. of CSSE, Yamaguchi University, Tokiwa-Dai 2557, Ube 755, Japan

通讯作者信息:

  • 刘超

    [Liu, C.]School of Computer Science, Beijing Polytechnic University, Beijing 100022, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Proceedings of the Joint Conference on Information Sciences

年份: 2000

期: 1

卷: 5

页码: 170-173

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:242/3909225
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司