• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiao, Chi (Xiao, Chi.) | Li, Weifu (Li, Weifu.) | Deng, Hao (Deng, Hao.) | Chen, Xi (Chen, Xi.) | Yang, Yang (Yang, Yang.) | Xie, Qiwei (Xie, Qiwei.) (学者:谢启伟) | Han, Hua (Han, Hua.)

收录:

EI Scopus SCIE PubMed

摘要:

Background: The locations and shapes of synapses are important in reconstructing connectomes and analyzing synaptic plasticity. However, current synapse detection and segmentation methods are still not adequate for accurately acquiring the synaptic connectivity, and they cannot effectively alleviate the burden of synapse validation. Results: We propose a fully automated method that relies on deep learning to realize the 3D reconstruction of synapses in electron microscopy (EM) images. The proposed method consists of three main parts: (1) training and employing the faster region convolutional neural networks (R-CNN) algorithm to detect synapses, (2) using the z-continuity of synapses to reduce false positives, and (3) combining the Dijkstra algorithm with the GrabCut algorithm to obtain the segmentation of synaptic clefts. Experimental results were validated by manual tracking, and the effectiveness of our proposed method was demonstrated. The experimental results in anisotropic and isotropic EM volumes demonstrate the effectiveness of our algorithm, and the average precision of our detection (92.8% in anisotropy, 93.5% in isotropy) and segmentation (88.6% in anisotropy, 93.0% in isotropy) suggests that our method achieves state-of-the-art results. Conclusions: Our fully automated approach contributes to the development of neuroscience, providing neurologists with a rapid approach for obtaining rich synaptic statistics.

关键词:

Deep learning Synapse detection 3D Reconstruction of synapses Electron microscope Synapse segmentation

作者机构:

  • [ 1 ] [Xiao, Chi]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
  • [ 2 ] [Li, Weifu]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
  • [ 3 ] [Chen, Xi]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
  • [ 4 ] [Xie, Qiwei]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
  • [ 5 ] [Han, Hua]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China
  • [ 6 ] [Xiao, Chi]Univ Chinese Acad Sci, Sch Future Technol, 19 Yuquan Rd, Beijing 100049, Peoples R China
  • [ 7 ] [Han, Hua]Univ Chinese Acad Sci, Sch Future Technol, 19 Yuquan Rd, Beijing 100049, Peoples R China
  • [ 8 ] [Li, Weifu]Hubei Univ, Chinese Acad Sci, Inst Automat, Fac Math & Stat, 368 Youyi Rd, Wuhan, Peoples R China
  • [ 9 ] [Deng, Hao]Macau Univ Sci & Technol, Fac Informat Technol, Avenida Wai Long, Taipa, Macao, Peoples R China
  • [ 10 ] [Yang, Yang]Chinese Acad Sci, Inst Neurosci, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
  • [ 11 ] [Yang, Yang]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
  • [ 12 ] [Han, Hua]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
  • [ 13 ] [Xie, Qiwei]Beijing Univ Technol, Data Min Lab, 100 Ping Yuan, Beijing 100124, Peoples R China

通讯作者信息:

  • 谢启伟

    [Xie, Qiwei]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China;;[Han, Hua]Chinese Acad Sci, Inst Automat, 95 Zhongguancun East Rd, Beijing 100190, Peoples R China;;[Xie, Qiwei]Beijing Univ Technol, Data Min Lab, 100 Ping Yuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

BMC BIOINFORMATICS

ISSN: 1471-2105

年份: 2018

卷: 19

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:635/4295560
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司