• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Hang (Guo, Hang.) (学者:郭航) | Guo, Qing (Guo, Qing.) | Yan, Xiao Ke (Yan, Xiao Ke.) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

EI Scopus SCIE

摘要:

Sodium-potassium alloy (Na-K), which is liquid at room temperature and pressure, is a promising working fluid for high-temperature heat pipes. Although several researches have been performed over the past decades, the experimental data for Na-K thermosyphons, especially for Na-K (wt. 55% K), was limited and needed. This study is to use Na-K (wt. 55% K) as working fluid to fabricate a high-temperature thermosyphon. The outside wall temperatures were measured to estimate the heat transfer performance of the fabricated thermosyphon by using 10 thermocouples, which were made of 0.2 mm-diameter Ni-Cr and Ni-Al wires. The thermal characteristics of the Na-K thermosyphon were studied at various heating temperatures (650, 675, 700, 725, 750, 775, 800, 825, 850 and 875 degrees C), condenser lengths (0.250, 0.220, and 0.190 m) and inclination angles (0 degrees and 50 degrees) to determine the influence of working conditions. Those factors considerably affected the heat transfer performance of the Na-K thermosyphon.

关键词:

Potassium Heat transfer Sodium Thermosyphon High-temperature

作者机构:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 5 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Qing]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 9 ] [Yan, Xiao Ke]Natl Inst Metrol, Beijing 100013, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China;;[Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED THERMAL ENGINEERING

ISSN: 1359-4311

年份: 2018

卷: 139

页码: 402-408

6 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:622/3902841
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司