• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Zhang, Renbo (Zhang, Renbo.) | Dou, Guoqin (Dou, Guoqin.) | Xu, Jiandong (Xu, Jiandong.) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI Scopus SCIE

摘要:

As a kind of impact resistant material, steel fiber reinforced concrete (SFRC) has a good ductility and energy dissipation capacity by improving the tensile strength and impact toughness. To explore the dynamic mechanical behavior of SFRC beams subjected to impact loading, 12 simply-supported SFRC beams with different stirrup ratios (0%, 0.253% and 0.502%) and different volume fractions of steel fibers (0%, 1%, 2% and 3%) were tested with free-falling drop-weights impacting at the mid-span of specimens. The failure patterns were observed and videoed, and simultaneously, the time histories of the impact force, the reaction force, and the mid-span deflection were recorded. Moreover, the influences of stirrup ratio and volume fraction of steel fibers on the impact resistant behavior of the SFRC beams were preliminarily analyzed and discussed. The results indicate that the impact resistant performance of SFRC beams, such as crack pattern, ductility, energy consumption capacity, and deformation recovery capacity can be improved by the addition of steel fibers and stirrups. The required static capacity of these beams were calculated based on the analysis of reaction force vs. displacement loop and impact force vs. displacement loop as well as absorbed energy ratio. For further understanding the experimental results, finite element simulation of SFRC beams subjected to impact loading were carried out. The rationality and accuracy of the finite element model was illustrated by the good agreement between the test observations and the numerical results.

关键词:

steel fiber Reinforced concrete beams finite element simulation impact load drop-weight test

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Dou, Guoqin]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 4 ] [Xu, Jiandong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 5 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

通讯作者信息:

  • 杜修力

    [Du, Xiuli]100 Ping Le Yuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF DAMAGE MECHANICS

ISSN: 1056-7895

年份: 2018

期: 7

卷: 27

页码: 1058-1083

4 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

被引次数:

WoS核心集被引频次: 47

SCOPUS被引频次: 52

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:652/4289888
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司