• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dong (Li, Dong.) (学者:李冬) | Jin, Liu (Jin, Liu.) (学者:金浏) | Du, Xiuli (Du, Xiuli.) (学者:杜修力) | Liu, Jingbo (Liu, Jingbo.)

收录:

EI Scopus SCIE

摘要:

Cementitious materials, mainly in the form of concrete, belong to a class of macroscopically heterogeneous materials. The building technology of mass concrete structures enables large-sized coarse aggregate to be used. The maximum coarse aggregate size, in conjunction with the mechanical properties of the interfacial transition zone (ITZ), have great influences on the mesoscopic crack path and the macroscopic mechanical behavior of concrete. Herein this study, based on some pioneering work (Stroeven, 2000; Rossello and Elices, 2004, Rossello et al., 2006; Elices and Rocco, 2008), the effects of varying the maximum coarse aggregate size and the ITZ strength on the global mechanical properties of concrete in direct tension are theoretically modelled from a mesoscopic point of view. The particle size effect behavior of concrete is analyzed based on the proposed theoretical method, and some general conclusions can be drawn as: (1) The degree of tortuosity of the mesoscopic crack path in direct tension increases with increasing maximum coarse aggregate size and with decreasing ITZ strength; (2) The fracture energy and the tensile strength of concrete increase dramatically with increasing ITZ strength; (3) For normal strength concrete, the fracture energy and the tensile strength decrease with increasing maximum coarse aggregate size, while for relatively high strength concrete, the trends are the opposite; (4) The properties of ITZ could significantly affect the homogeneity of concrete. High quality ITZ could make the mechanical properties of concrete more homogeneous and get a relatively high strength concrete, consequently a short characteristic length and a high brittleness number are resulted; (5) For normal strength concrete, the characteristic length increases with increasing maximum coarse aggregate size, while for relatively high strength concrete, it is fairly insensitive to the maximum coarse aggregate size. It is hoped that this theoretical method may be helpful in the study of size effect and in the design of concrete and future cementitious materials.

关键词:

Fracture energy Brittleness Maximum coarseaggregate size Size effect Characteristic length Tensile strength Interfacial transition zone (ITZ) Meso-mechanical analysis

作者机构:

  • [ 1 ] [Li, Dong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Dong]Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China
  • [ 5 ] [Liu, Jingbo]Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China

通讯作者信息:

  • 金浏

    [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING FRACTURE MECHANICS

ISSN: 0013-7944

年份: 2018

卷: 197

页码: 128-150

5 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:884/3906981
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司