• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu Xiucheng (Liu Xiucheng.) (学者:刘秀成) | Zhang Ruihuan (Zhang Ruihuan.) | Wu Bin (Wu Bin.) | He Cunfu (He Cunfu.) (学者:何存富)

收录:

EI Scopus SCIE

摘要:

Both magnetic Barkhausen noise (MBN) and tangential magnetic field (TMF) strength can be applied in the quantitative prediction of surface hardness of ferromagnetic specimens. The prediction accuracy depends on the selected model and the input parameters of the model. In this study, the relationship between the surface hardness of 12CrMoV steel plate and the measured MBN and TMF signals is investigated with multivariable linear regression (MLR) model and BP neural network technique. A comparative study between the MLR and BP model is conducted. The external validation results show that the BP model utilizing four MBN features as the input nodes has a smaller average prediction error (3.7%) than that of the MLR model (13.2%). Features extracted from the MBN and TMF signals are combined together as the input parameters of the BP model in order to achieve high accuracy. After adding two more TMF features into the input nodes of the BP network, the external validation results suggest that the average prediction error is decreased from 3.7 to 3.5%.

关键词:

Surface hardness BP neural network Tangential magnetic field Magnetic Barkhausen noise Multivariable linear regression model

作者机构:

  • [ 1 ] [Liu Xiucheng]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 2 ] [Zhang Ruihuan]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 3 ] [Wu Bin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China
  • [ 4 ] [He Cunfu]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China

通讯作者信息:

  • 刘秀成

    [Liu Xiucheng]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF NONDESTRUCTIVE EVALUATION

ISSN: 0195-9298

年份: 2018

期: 2

卷: 37

2 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:260

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:779/4290189
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司