收录:
摘要:
A dynamic multi-objective optimization control (DMOOC) scheme is proposed in this paper for the wastewater treatment process (WWTP), which can dynamically optimize the set-points of dissolved oxygen concentration and nitrate level with multiple performance indexes simultaneously. To overcome the difficulty of establishing multi-objective optimization (MOO) model for the WWTP, a neural network online modeling method is proposed, requiring only the process data of the plant. Then, the constructed MOO model with constraints is solved based on the NSGA-II (non-dominated sorting genetic algorithm-II), and the optimal set-point vector is selected from the Pareto set using the defined utility function. Simulation results, based on the benchmark simulation model 1 (BSM1), demonstrate that the energy consumption can be significantly reduced applying the DMOOC than the default PID control with the fixed set-points. Moreover, a tradeoff between energy consumption and effluent quality index can be considered.
关键词:
通讯作者信息:
电子邮件地址: