• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wen (Zhang, Wen.) | Du, Yuhang (Du, Yuhang.) | Yoshida, Taketoshi (Yoshida, Taketoshi.) | Wang, Qing (Wang, Qing.) | Li, Xiangjun (Li, Xiangjun.)

收录:

EI Scopus SCIE

摘要:

Monitoring and predicting the trend of bug number time series of a software system is crucial for both software project managers and software end-users. For software managers, accurate prediction of bug number of a software system will assist them in making timely decisions, such as effort investment and resource allocation. For software end-users, knowing possible bug number of their systems ahead will enable them to adopt timely actions in coping with the loss caused by possible system failures. This study proposes an approach called SamEn-SVR to combine sample entropy and support vector regression (SVR) to predict software bug number using time series analysis. The basic idea is to use template vectors with the smallest complexity as input vectors for SVR classifiers to ensure predictability of time series. By using Mozilla Firefox bug data, we conduct extensive experiments to compare the proposed approach and state-of-the-art techniques including auto-regressive integrated moving average (ARIMA), X12 enhanced ARIMA and polynomial regression to predict bug number time series. Experimental results demonstrate that the proposed SamEn-SVR approach outperforms state-of-the-art techniques in bug number prediction.

关键词:

template vectors regression analysis time series Mozilla Firefox bug data support vector regression bug number prediction software management sample entropy software bug number autoregressive moving average processes program debugging SamEn-SVR approach input vectors SVR classifiers vectors bug number time series software project managers support vector machines pattern classification time series analysis software end-users software system entropy

作者机构:

  • [ 1 ] [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 3 ] [Du, Yuhang]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China
  • [ 4 ] [Yoshida, Taketoshi]Japan Adv Inst Sci & Technol, Sch Knowledge Sci, 1-1 Ashahidai, Nomi City, Ishikawa 9231292, Japan
  • [ 5 ] [Wang, Qing]Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China
  • [ 6 ] [Li, Xiangjun]Xian Univ, Sch Informat Engn, Xian 710065, Shaanxi, Peoples R China

通讯作者信息:

  • [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China;;[Zhang, Wen]Beijing Univ Chem Technol, Res Ctr Big Data Sci, Beijing 100029, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IET SOFTWARE

ISSN: 1751-8806

年份: 2018

期: 3

卷: 12

页码: 183-189

1 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:4

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:98/3903429
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司