收录:
摘要:
Monitoring and predicting the trend of bug number time series of a software system is crucial for both software project managers and software end-users. For software managers, accurate prediction of bug number of a software system will assist them in making timely decisions, such as effort investment and resource allocation. For software end-users, knowing possible bug number of their systems ahead will enable them to adopt timely actions in coping with the loss caused by possible system failures. This study proposes an approach called SamEn-SVR to combine sample entropy and support vector regression (SVR) to predict software bug number using time series analysis. The basic idea is to use template vectors with the smallest complexity as input vectors for SVR classifiers to ensure predictability of time series. By using Mozilla Firefox bug data, we conduct extensive experiments to compare the proposed approach and state-of-the-art techniques including auto-regressive integrated moving average (ARIMA), X12 enhanced ARIMA and polynomial regression to predict bug number time series. Experimental results demonstrate that the proposed SamEn-SVR approach outperforms state-of-the-art techniques in bug number prediction.
关键词:
通讯作者信息:
电子邮件地址: