• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dai, Tao (Dai, Tao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Niu, Li (Niu, Li.) | Zhang, Yong-bing (Zhang, Yong-bing.) | Lu, Weizhi (Lu, Weizhi.) | Xia, Shu-Tao (Xia, Shu-Tao.)

收录:

EI Scopus SCIE

摘要:

Multiply-distorted images, that is, distorted by different types of distortions simultaneously, are so common in real applications. This kind of images contain multiple overlaying stages (e.g., acquisition, compression and transmission stage). Each stage will introduce a certain type of distortion, for example, sensor noise in acquisition stage and compression artifacts in compression stage. However, most current blind/no-reference image quality assessment (NR-IQA) methods are specifically designed for singly-distorted images, thus resulting in their deficiency in handling multiply-distorted images. Motivated by the hypothesis that human visual system (HVS) is adapted to the structural information in images, we attempt to assess multiply-distorted images based on structural degradation. To this end, we use both first-and high-order image structures to design a novel referenceless quality metric for multiply-distorted images. Specifically, we leverage the quality-aware features extracted from both the gradient-magnitude map and contrast-normalized map, and further improve the performance by making use of redundancy of features with random subspace method. Experimental results on popular multiply-distorted image databases verify the outstanding performance of the proposed method. (c) 2018 Elsevier B.V. All rights reserved.

关键词:

Multiple distortions Image quality assessment Local binary pattern No-reference Structural degradation

作者机构:

  • [ 1 ] [Dai, Tao]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 2 ] [Zhang, Yong-bing]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 3 ] [Lu, Weizhi]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 4 ] [Xia, Shu-Tao]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
  • [ 5 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Niu, Li]Rice Univ, Elect & Comp Engn Dept, Houston, TX 77005 USA

通讯作者信息:

  • [Lu, Weizhi]Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 290

页码: 185-195

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1153/3890346
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司