• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Jung, Cheolkon (Jung, Cheolkon.) | Fu, Qingtao (Fu, Qingtao.) | Jia, Ting (Jia, Ting.)

收录:

EI Scopus SCIE

摘要:

In this paper, we propose visual saliency estimation using constraints. Based on the observations that salient regions are generally distinctive from the background, we define visual saliency as the possibility of being assigned to the label of the most salient region. First, we generate an initial saliency map for a given image at the superpixel level using superpixel segmentation and three common priors. Then, we select salient and non-salient seeds from the initial saliency map to generate adaptive constraints. Adaptive constraints are able to propagate the seed information adaptively by their correlations. Finally, we produce the visual saliency map by propagating saliency seeds to the whole image using a learned non-linear kernel mapping. Experimental results demonstrate that kernel learning and seed propagation are capable of learning distinctive saliency from images. (c) 2018 Elsevier B.V. All rights reserved.

关键词:

Kernel learning Saliency estimation Saliency seed Adaptive constraint Saliency propagation

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Jung, Cheolkon]Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
  • [ 5 ] [Fu, Qingtao]Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China

通讯作者信息:

  • [Jung, Cheolkon]Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 290

页码: 1-11

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1073/3884806
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司