• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Chen, Zhi-Yuan (Chen, Zhi-Yuan.) | Liu, Hong-Xu (Liu, Hong-Xu.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Interval Type-2 fuzzy-neural-network (IT2FNN) has been widely used to model nonlinear systems. In current IT2FNN-based schemes, however, one of the main drawbacks is that the structure of IT2FNN is hard to be determined. In this paper, a self-organizing interval Type-2 fuzzy-neural-network (SOIT2FNN) is introduced via considering the structure adjustment and the parameters learning process simultaneously. Two main contributions of SOIT2FNN are summarized: Firstly, an intensity of information transmission algorithm, which can evaluate the independent component contributions of fuzzy rules, is introduced to optimize the structure of SOIT2FNN. Secondly, an adaptive second-order algorithm, which can obtain fast convergence, is developed to adjust the parameters of SOIT2FNN. To demonstrate the merits of SOIT2FNN, several benchmark nonlinear systems and a real world application are examined with comparisons against other existing methods. Moreover, a statistical analysis of the performance results indicates that the proposed SOIT2FNN performs better and is more suitable for modeling nonlinear systems than some existing methods. (c) 2018 Elsevier B.V. All rights reserved.

关键词:

Self-organizing interval Type-2 Intensity of information transmission algorithm Adaptive second-order algorithm Nonlinear system modeling fuzzy-neural-network

作者机构:

  • [ 1 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Zhi-Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Hong-Xu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Chen, Zhi-Yuan]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Hong-Xu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2018

卷: 290

页码: 196-207

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:161

JCR分区:1

被引次数:

WoS核心集被引频次: 46

SCOPUS被引频次: 52

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:343/3910588
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司