• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, H. (Chen, H..) | Wei, P. (Wei, P..)

收录:

Scopus

摘要:

Many studies have found that the photovoltaic (PV) cell temperature plays an important impact on the solar-to-electricity conversion efficiency. Different cooling liquids like air and water have been introduced to pass across the PVs to reduce the cell temperature, and thus increase the electrical efficiency. In this paper, the refrigerant R134a is used as the cooling liquid and the PV/thermal (PV/T) panel is coupled with a heat pump system acting as the evaporator, which is expected to achieve a better cooling effect and energy performance due to its low boiling temperature. Two different kinds of PV/T panels, glass vacuum tube (GVT) type and flat plate (FP) type, are proposed for the study on the energy performance comparison. The results show that the GVT PV/T panel has an average thermal efficiency of 0.775 and an average electrical efficiency of 0.089 (based on the reference efficiency of 0.12), which is 73.4% and 1.1% higher than that of the FP PV/T panel respectively, with the solar radiation varying from 200 W/m 2 to 1000 W/m 2. The GVT PV/T heat pump system has an average COP of 5.6, 9.8% higher the FP PV/T heat pump system. The GVT PV/T heat pump system has a better energy performance than the FP PV/T heat pump system. © (2012) Trans Tech Publications, Switzerland.

关键词:

COP; Heat pump system; Photovoltaic/thermal panel

作者机构:

  • [ 1 ] [Chen, H.]Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • [ 2 ] [Wei, P.]Beijing Polytechnic College, Beijing 100048, China

通讯作者信息:

  • [Chen, H.]Beijing University of Civil Engineering and Architecture, Beijing 100044, China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Advanced Materials Research

ISSN: 1022-6680

年份: 2012

卷: 446-449

页码: 2888-2894

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:2460/4248208
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司