• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jichao (Liu, Jichao.) | Chen, Yangzhou (Chen, Yangzhou.) (学者:陈阳舟) | Zhan, Jingyuan (Zhan, Jingyuan.) | Shang, Fei (Shang, Fei.)

收录:

EI Scopus SCIE

摘要:

This paper presents an on-line energy management strategy (EMS) based on trip condition prediction for commuter plug-in hybrid electric vehicles (P-HEVs). The purpose is to provide an on-line predictive control approach to minimize fuel consumption. Two pivotal contributions are provided to realize the purpose. First of all, we establish the trip condition prediction model by using back propagation neural network, to obtain the real-time vehicle-speed trajectory on-line. Particularly, both the genetic algorithm and particle swarm optimization algorithm are applied to improve the prediction accuracy of the trip condition prediction model. Next, to obtain an applicable EMS in real time, we propose a dynamic programming-based predictive control strategy. Finally, a simulation study is conducted for applying the proposed strategy to a practical trip path in the Beijing road network. The results show that the designed trip condition prediction model can effectively realize the on-line vehicle-speed prediction, and the prediction accuracy is more than 93%. In addition, compared to the offline global optimization EMS, although the proposed strategy makes the fuel consumption grow less than 5.2%, it can be implemented in real time. Moreover, compared with the existing real-time EMSs, it can further reduce the fuel consumption and emissions. It shows that the proposed EMS can provide an effective solution for commuter P-HEVs applying it on-line.

关键词:

trip condition prediction energy management strategy predictive control Plug-in hybrid electric vehicle

作者机构:

  • [ 1 ] [Liu, Jichao]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Beijing Key Lab Transportat Engn, Coll Metropolitan Transportat, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Yangzhou]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Beijing Key Lab Transportat Engn, Coll Metropolitan Transportat, Beijing 100124, Peoples R China
  • [ 3 ] [Zhan, Jingyuan]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Beijing Key Lab Transportat Engn, Coll Metropolitan Transportat, Beijing 100124, Peoples R China
  • [ 4 ] [Shang, Fei]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Beijing Key Lab Transportat Engn, Coll Metropolitan Transportat, Beijing 100124, Peoples R China

通讯作者信息:

  • 陈阳舟

    [Chen, Yangzhou]Beijing Univ Technol, Beijing Collaborat Innovat Ctr Metropolitan Trans, Beijing Key Lab Transportat Engn, Coll Metropolitan Transportat, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ISSN: 0018-9545

年份: 2018

期: 5

卷: 67

页码: 3767-3781

6 . 8 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:156

JCR分区:1

被引次数:

WoS核心集被引频次: 39

SCOPUS被引频次: 43

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:876/3899112
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司